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1. Introduction

2. Governing equations and flow solutions

3. Microfluidic channels and circuits 

4. Diffusion and mixing in microscale

5. Capillary effects and microdroplets

Course topics

Part I: T. Lehnert (EPFL-LMIS2)

“Theoretical” microfluidics and more… 
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1. Electrohydrodynamics
Debye-layer, electro-osmotic flow, (di-)electrophoresis

2. Magnetophoresis

3.    Nanofluidics

Part II: Prof. M.A.M. Gijs (EPFL-LMIS2)

Course topics

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

The theoretical parts of this course are mainly based on:

Theoretical Microfluidics 
Henrik Bruus
Oxford University Press, 2008 (Reprint 2010)
(ISBN 978-0-19-923509-4)

Equation/figure numbering in PART I of these lecture notes
refers to the indicated edition of the book.

Numbering in PART II refers to an earlier edition !

All other references are indicated in the text.

Further reading:

Micro- and nanoscale fluid mechanics: Transport in 
microfluidic devices
J. Kirby
Cambridge University Press 2010

also on youtube
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1. INTRODUCTION

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)
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Cells on-chips

Nanofluidics

Yeast cell division
10 μm

Microbeads
Viruses

Proteins/DNA chips

C. elegans worms  1 mm

Microfluidic and nanofluidic systems
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Tallest known tree on earth: “Hyperion”

115.7 m ! Redwood (sequoia sempervirens)

The height is limited by increasing water
transport constrains.

p(H2O)

10 bar

Water transport system in vascular plants

Nature is based on powerful microfluidic systems

Microfluidics ?

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Transport of water occurs through tube-like vessels with   10 - 100 m
(Xylem, ξυλον - wood).

Evaporation through leaf pores ( < 10 m) is a major driving force for pulling
up through the tree trunk.

10 m

Leaf pore

bio1151.nicerweb.com/Locked/media/ch35/ 

Xylem

Microfluidics !
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  20 m

Red blood cell
in a blood
capillary

1 m

The human cardiovascular system 

V  5L, flow rate at rest  5L/min

Networks of blood capillaries ( ≈ 5-10 m)
span over the lung and other organs.

Total length 100000 km (!) (80% capillaries).

Capillary beds spread over all tissues 
where gas exchange occurs.

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Niagara falls: Average flow rate 2000 m3/s 

Flow patterns and solid body/liquid interactions

Swimming protozoa

Macrofluidics - Microfluidics: What makes the difference ? 

Jumping humpback whale
L ≈ 15 m, speed 20-50 km/h. Large fins

L  100 m, speed  100 m/s - Flagella, cilia

Can it jump out ?
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Size matters: Effects of downscaling are important !

 Viscous forces dominate (surface forces).

 Inertial forces (and gravity) become
negligible (volume forces).

 Interfacial/capillary forces determine the
liquid shape and driving forces.

 Exploiting boundary (e.g. electrokinetic)
effects is effective in microfluidic systems.

 Dimensionless numbers evaluate the
relative importance of competing forces.

Macrofluidics - Microfluidics: What makes the difference ? 

Small raindrop 
  mm, V  50 L

1/20

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

2. Governing equations and 
flow solutions2.1 Flow kinematics and shear stress

2.2 Continuity equation in fluid dynamics

2.3 Navier-Stokes equations

2.4 Simple flow solutions

2.5 Reynolds number and Stokes flow

2.6 Hydrodynamic focusing (Examples)

2. Governing equations and 
flow solutions

1/20
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2.1 Flow kinematics and shear stress

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

2.1 Flow kinematics and shear stress

v(r,t) = v(vx,vy,vz,t)   u(r,t) = u(u,v,w,t)

Continuum description: Flow around a wing

v(r,t) field    Vector fields (direction and length)

p(r,t) field    Scalar fields  (“value”, no direction)

v(x,y) p(x,y)

Strain rate tensor  s

9 components in the general case for u(u,v,w)

 A fluid deforms continuously at a
strain rate , generated by velocity
gradients u.

 Extension and/or shear deformation
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“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)here denotations are taken from: J. Kirby, Micro- and nanoscale fluid mechanics : transport in microfluidic devices

1 0
0    -1ext = 

Diagonal elements of 
 Extensional strain rate 

 = 0 for incompressible fluids !

• Example: Extensional strain rate of a fluidic element

u(u,v)

u

v

Strain tensor for pure extensional strain ?  for a 2D velocity field u(u,v)

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Strain tensor for pure shear strain ?

here denotations are taken from: J. Kirby, Micro- and nanoscale fluid mechanics : transport in microfluidic devices

Symmetric off-diagonals 
 Shear strain rate

shear = 0    1
1    0

u(u,v)

• Example: Shear strain rate of a fluidic element

u

v

 for a 2D velocity field u(u,v)



T. Lehnert / Micro-718 (05.2021) 9

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

 The strain rate tensor is related to the stress tensor 
N/m2 = Pa(stress  force / surface area)

 (T) or  (T) [Pa·s] is the dynamic viscosity 

 = constant (for T = const)  Newtonian fluids

   in literature ! 

 =  

In microfluidics the viscous
flow regime (internal
friction) is predominant.
  is of fundamental
importance!

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

4He (superfluid) at T < 2.17 K ≈ -271 °C 

 = 0
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2.1 Flow kinematics and shear stress

Governing equations

 Continuity equation (mass conservation)

 Navier-Stokes equations for v(r,t) (momentum conservation)

 Convection-Diffusion equation 

 Partial differential equations
describing local properties of the
flow field.

 in particular for v(r,t) p(r,t) and force
densities.

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

2.2 The continuity equation 
in fluid dynamics

1/30
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2.2 Continuity equation in fluid dynamics

• The continuity eqn expresses the conservation of mass M(,t)

Mass flux density J(r,t) [kg/(m2s)] 
mass density , flow velocity v

(2.2)

(2.3)v

(r,t)


 M(,t) in a region  can only vary by mass flow through the

surface 

(2.4) 

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

2.2 Continuity equation in fluid dynamics

 using the Gauss theorem

=



A vector field with divergence 
has a source (or a sink)

Solve this for v(r,t): What is the problem ?

(2.5)
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2.2 Continuity equation in fluid dynamics


Solve this for v(r,t): What is the problem ?

(2.5)

• Nabla operator 

• The divergence of a vector field is a scalar field

• The gradient of a scalar field is a vector field p = ex xp + ey yp + ez zp

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

2.2 Continuity equation in fluid dynamics


Solve this for v(r,t): What is the problem ?

(2.5)

(2.6)with          =(2.4) (2.5)

Integral form of the Continuity equation
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• for compressible fluids with (r,t) and a flow field v(r,t)

• for incompressible fluids 
(set  = const and uniform, i.e. t = 0 and i = 0) 

(2.7)

(2.9)

It describes the mass balance in any point of the 3D flow field.

Divergence of v(r,t) 

2.2 Continuity equation in fluid dynamics

div v = 0

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

2.2 Continuity equation in fluid dynamics

Examples: A physical flow field must fulfil the continuity equation (v = 0). For
incompressible fluids the divergence of v(r,t) is zero everywhere in the field
(no source, no sink).

v

div v(x,y,z)
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2.2 Continuity equation in fluid dynamics

div v = 0

B 1/45

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

1821/1822 

Navier modified the Euler equations (1757)for inviscid flow

…by introducing friction in
the equations of fluid motion.

2.3  Navier-Stokes equations

A specialist in bridge building (he
was the first to develop a theory of
suspension bridges).

viscous term

• The Navier-Stokes equations (NSE) describe the
fluidic transport by advection
 Equations of motion for a flow field v(r,t).

• They express conservation of momentum.
 Newton’s 2nd law applied to fluid mechanics.
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Navier-Stokes eqns derived by using the Lagrange derivative

Consider a particle moving on an arbitrary path though a 2-D field (x,y,t),
e.g. a T or p field.  depends on (x,y) but may also change with time t.

T(x,y,t)

x(t),y(t)

Lagrangian description: The observer moves on the particle through the field.

How do the field parameters x,y,tchange along the path ?

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Navier-Stokes eqns derived by using the Lagrange derivative

or with vi = dxi/dt

T(x,y,t)

x(t),y(t)

The 3D Lagrange derivative can be written as (2.34)

(2D3D)

The variation of (x(t),y(t),t) along the
pathline is expressed by the total time
derivative of .
 Lagrange derivative DDt

(also called substantial or material derivative)

 The pathline is given by [x(t),y(t))]
 Applying the chain rule for deriving (r(t),t)
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How does the velocity of a particle change on 
a specific path through a flow field v(r,t) ?

Navier-Stokes Eqns derived by using the Lagrange derivative

v(x,y,t)

x(t),y(t)

In this case trajectory and velocity of the particle are not 
arbitrary but determined by the flow field v(r,t) itself ! 

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Newton’s 2nd law for a free particle

Navier-Stokes Eqns derived by using the Lagrange derivative

v(x,y,t)

x(t),y(t)

 The equation of motion of the
fluidic parcel takes the form of the
Navier-Stokes equation (2.35)

 The force densities fj are related to pressure, viscosity and external body forces.

 Describes the acceleration of the particle
when moving through the flow field v(r,t).

 Relating this to forces

The Lagrange derivative
for the velocity component vx(x,y,z,t) of the
particle is given by (likewise for vy and vz):

“Newton’s 2nd law” for a fluidic parcel

2/15
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A heuristic derivation of the pressure and viscosity force densities

Fx(0) = p(0)yz Fx(x) = p(x)yz

Total pressure force in x  

Total force density in x  

Pressure forces

f(x,y,z) = -p(x,y,z)

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

A heuristic derivation of the pressure and viscosity force densities

Viscous shear forces

Fx(0) = zvx(0) xy

Fx(z) = zvx(z) xy

f(x,y,z) = 2v(x,y,z)

Viscous force density

2/30
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Navier-Stokes equations for incompressible fluids

B

Non-linear 2nd order vector partial differential eqn for v(r,t)

 = const,  = const

(r,t) and  = const,  = const

Navier-Stokes equations for compressible fluids
More details in Henrik Bruus “Theoretical Microfluidics” 

(2.29)

(2.30)

 is the dynamic viscosity due to shear stress.

 stands for internal friction due to compression.

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Navier-Stokes equations for incompressible fluids (vector form)

Advective terms account for acceleration of fluidic
particles in unsteady or steady flow states.
 Inertial force densities

B

The transient term tv is relevant if v(t) changes with time.
The non-linear term (v)v describes convective
acceleration (time-independent), e.g. in systems with no
translation invariance.
(v)v is particularly relevant in turbulent flow regimes.
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Navier-Stokes equations for incompressible fluids (vector form)

Body force densities

p and · are surface force densities
for pressure and viscous shear stress.

For incompressible fluids · = 2v

 dynamic viscosity [Pa·s]

B

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Example: Steady (time independent) flow through a constriction (nozzle)

 Advective acceleration of the flow

 The inertial part of the NSE is given by L0

vx(1+x/L0)vx

Rough estimate of the inertial force density fi,
assuming that vx increases by V0 over L0.
V0 and L0 are characteristic scales of the system. T. M. Squires and S. R. Quake: Microfluidics: Fluid 

physics at the nanoliter scale

= 0 

Exploring the non-linear term (v)v in the Navier-Stokes eqns

with

[ kg/m3 m2/s2m ] 
[ kg m/s2 m-3 ]
[ N m-3 ]

fi
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A pressure force in x-direction generates
velocity/gradient components in x,y,z directions.
This results in flow instabilities and turbulences !

Example: Inviscid flow (neglecting viscosity)
in a pressure field.

e.g. only pressure gradient in x-direction

Exploring the non-linear term (v)v in the Navier-Stokes eqns

Turbulences on marcoscale due to fluidic inertia

In microfluidics inertial forces are normally negligible with respect to viscous forces.

Some examples where inertial fluidic properties are relevant will be shown later.

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

2.4  Solutions for simple flow problems

US$ 1 million Millennium Problem
Navier-Stokes equations are a
system of non-linear coupled
partial differential eqns. http://www.claymath.org/millennium-problems

- Numerical solutions
- Analytical techniques (e.g. eigenfunction

expansion)
- Simplifications in specific cases (simple

geometries, Stokes flow at low flow rates)

 Initial and boundary conditions have to be defined.

Approaches for solving the Navier-Stokes equations

No-slip boundary condition for a channel wall

B 3/00
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Taylor-Couette flow of a viscous fluid between rotating cylinders

Low rotation speed
Couette flow purely azimuthal and laminar
(bearing flow).
Application: Rheometers for measuring 

High rotation speed
Flow becomes unstable: Vortices and
turbulent patterns emerge.

Good model system to study flow
instabilities and transitions.

https://en.wikipedia.org/wiki/Taylor-Couette_flow

https://doi.org/10.1051/epjconf/201921302014

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Couette flow between two moving parallel plates  

(Fig. 3.3)vx(z) 

Navier-Stokes eqn

(i) Translation invariance along x

 The non-linear term vanishes

(ii)    p = p0 = const

(iii)   Steady state conditions 

p0 p0

= 0
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Couette flow between two moving parallel plates  

(Fig. 3.3)vx(z) 

Navier-Stokes eqn

(i) Translation invariance along x

 The non-linear term vanishes

(ii)    p = p0 = uniform

(iii) Steady state conditions 

(iv) no external forces

p0 p0

= 0

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

(Fig. 3.3)vx(z) 

Force required to move the plate 
(with surface A)

(3.15)

(3.16)

(3.13)Navier-Stokes eqn

3/15

Couette flow between two moving parallel plates  

Solution by integration 
 Linear velocity profile

xz =  vxz
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(Fig. 3.3)vx(z) 

3/30

Couette flow between two moving parallel plates  

Physical interpretation of Couette flow:
(i) No convective acceleration, uniform 

pressure.
(ii) The viscous force density is zero (the 

second derivative of v).
(iii) The profile v(r) is independent of . 
(iv) The total force Fx is fct of the viscosity. 

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

2.5 Reynolds number and Stokes flow

for Re ≥ Recrit >> 1  turbulent flow regime

Flow regimes

3/15
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Transition from laminar to turbulent (water) flow in a tube with increasing flow speed

https://www.youtube.com/watch?v=XOLl2KeDiOg

Different flow regimes

(Reproduction of Reynold’s original experiment)

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

In microfluidics, the pressure p is
normalized by a characteristic
shear stress V0/L0.

(2.36)

Dimensionless form of the Navier-Stokes equations

Navier-Stokes eqn

The general fluidic properties of a system can be evaluated by using 
characteristic scales determined by the boundary conditions: L0 , V0

Dimensionless (normalized) 
forms can be derived for all 
variables, in particular for …

Pressure p is also a “stress” 
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Dimensionless form of the Navier-Stokes equations

Navier-Stokes eqn

Making the Navier-Stokes eqns dimensionless

(2.38)

(2.37)

for  tv = 0

Dimensionless form
of the NSE

(2.39)Reynolds number V0
2/L0

V0/L0
2

or the kinematic viscosity    = 10-6 m2/s for water 

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Onset of turbulent flow 
Flow in a pipe 2.3 × 103 to  5.0 × 104

Boundary layers up to 106

Microorganisms ̴ 10-6 - 10-3

Blood flow in aorta ̴ 1 × 103

Human swimming  ̴ 104 - 106 

Some values for Reynolds numbers

Typical values for microfluidic devices

Water-based fluids  ≈ 1.0 mPa s 

Range of flow speeds 1 m/s - 1 cm/s

Typical channel width 1 - 100 m

 Re range between O (10-6) to O (100)
 Re are very small in microfluidic systems
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Inertial microfluidics

 In microfluidics fluid inertia is normally negligible (Stokes flow, Re ≪ 1).
 Inertial microfluidics works in between Stokes and turbulent regimes (inertia

and fluid viscosity are finite, 1 < Re < 100).

Vortices in expanding channels 
for cell trapping

Particle sorting by inertial lift forces

J. Zhang et al., Fundamentals and applications of inertial
microfluidics: a review, Lab Chip, 2016, 16, 10

3/45 (application ? )

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Dean flow: Circulating secondary flow in slightly curved channels (R >> w).
Inertial effects at high Re numbers (1 < Re < 100) / high flow speeds !

3D hydrodynamic focusing using Dean flow

(see also Chapter 4.2.5: “A multivortex mixer based on inertial flow properties”)

Inhomogeneous flow profile causes centrifugal
forces (greatest in the center).

Dean number

tube diameter d or channel width, R is the radius of curvature of the 

path of the channel.

 = (d/R)5 Re

Dean flow in curved channels 
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Example of a single-layer planar device (PDMS)

 Dean vortices generate “microfluidic drifting”
 Stretching of the sample flow across the

channel width (vertical focusing, red).
 Two lateral sheath flows are introduced for

horizontal focusing.

Re = 74 (!), De  43
High flow speed in the range of  m/s !

Cross-sectional profiles of the fluorescein dye concentration in the
focusing device. Inset: simulation of the secondary flow velocity field
shows Dean vortices in the 90° curve.

X. Mao et al., Lab Chip, 2007, 7, 1260-1262

X. Mao et al., Lab Chip, 2009, 9, 1583-1589
Main channel w=100 m, h=75 m, L=1cm, Rcurve = 250 m

3D hydrodynamic focusing using Dean flow

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Focused beam   15 m
The 3D architecture of the sample flow
during the focusing process characterized by
confocal microscopy (fluorescein solution). Inlet A: Cells or particles;

Inlet B: vertical focusing sheath flow;

lnlets C and D: horizontal focusing sheath flows.

Inset 2 represent the Dean vortices.
X. Mao et al., Lab Chip, 2007, 7, 1260-1262

3D hydrodynamic focusing using Dean flow 3D focusing for on-chip cytometry
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Stokes flow and Stokes equations

Stokes, G. G. 
Effect of the Internal Friction of Fluids on the Motion of Pendulums
Transactions of the Cambridge Philosophical Society, Vol. 9, pp. 8-93, 1851

He assumed that the flow is so slow that
acceleration of the fluid as it passes around the
sphere can be ignored, (v)v = 0.

He derived the viscous drag force
Fd on a sphere by solving a
simplified version of the Navier-
Stokes eqns analytically.

Sedimentation of (micro-)particles

3/30

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Stokes equation

Stokes flow and Stokes equations

(2.41)

High viscosity flows or very slow motions.

 low viscosity
 negligible inertial forces

Stokes equations are most relevant for flow in microchannels, transport of microparticles or
cells, the swimming of microorganisms, etc.

Stokes flow or “creeping flow” (very slow !)
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For Re << 1 the non-linear term (v)v in the Navier-
Stokes equation can be neglected.

Stokes equation

Stokes flow and Stokes equations

Stokes flow or “creeping flow” (very slow !)

(2.41)

Re < 0.1 is a rule of thumb that the Stokes eqns are a good approximation.

Reynolds introduced “his” number only in 1883, i.e. more than 30 after Stokes’
intuitive approach.

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Properties of Stokes flow

- Uniqueness (no flow instabilities)
 Laminar flow patterns

- Linear in p and v : Superposability of
flow solutions, e.g. for a changing
driving force (boundary condition).

- Reversibility: (i) Flow symmetry around
obstacles. (ii) If a boundary motion is
reversed then each point of the flow
retraces its history.

Microfluidic artwork showing laminar flow patterns.

channel  f

Qs
channel  c

QB/2

QB/2

Very stable flow conditions: 
Hydrodynamic focusing down to wfs  10 m

Tesla valve. In the Stokes flow regime no
“valving” effect is observed for inverted flow
directions as forward and reverse flow paths
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tv  0 Transient form of the Stokes equation

L0

The transient form of the Stokes equation 

Stokes eqn takes the form of a momentum
diffusion equation with the diffusion constant
 =  (kinematic viscosity [m2/s])

Example: Poiseuille flow in a channel for time dependent
boundary conditions: p = 0 for t  0 (relaxing flow)

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

The transient form of the Stokes equation 

Balance of unsteady inertial 
and viscous force densities

Estimation of the time scale 0 to establish/or to stop a steady laminar flow upon
application/release of an external pressure difference p.

 10 ms for a 
100 m channel

L0
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K. Lien et al.,  Lab Chip, 2007, 7, 868–875 | 869
DOI: 10.1039/b700516d

Unbounded Stokes flow around a sphere: The viscous drag force

Y. enterocolitica attached to magnetic 
microbeads (  4.5 m )

Example: Microsystems based on functionalized magnetic microbeads

3/15

Important for transport of microparticles or cells, diffusivity of macromolecules,
the swimming of microorganisms, etc.

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Purification and enrichment of Dengue viruses

K. Lien et al.,  Lab Chip, 2007, 7, 868–875 | 869
DOI: 10.1039/b700516d

Unbounded Stokes flow around a sphere: The viscous drag force
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Creeping flow (Re <<1): Acceleration can be ignored / inertial forces (v)v = 0.
The fluid is further slowed down due to viscous forces when passing the bead surface.

 Velocity field v(r,) in terms of a power
series in a/r (spherical coordinates)

Unbounded Stokes flow around a sphere: The viscous drag force

Boundary conditions 
v(a) = 0 and v() = v0

The flow pattern is symmetrical front to back.

for more details: J. Kirby, Micro- and nanoscale fluid mechanics

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Shear stress on a spherePressure field on the sphere 

(3.126)

Shear stress on the surface of 
a sphere (radius a)

Pressure field on the sphere 
(radius a, p* = ambient pressure)



Unbounded Stokes flow around a sphere: The viscous drag force
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(3.126)

Shear stress on the surface of 
a sphere (radius a)

Pressure field on the sphere 
(radius a, p* = ambient pressure)



Unbounded Stokes flow around a sphere: The viscous drag force

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Shear stress on a spherePressure field on the sphere 

(3.126)

 The drag force Fd can be derived from the stress tensor as integral over the 
surface force densities (including the normal p components).

‘Stokes Law’ for the viscous drag force on a sphere (3.127)

Corrections:  
 Drag coefficient starts deviating for Re ≥ 0.2 

 Drag on a sphere will be up to a factor 3 higher in the vicinity of a solid wall.

accurate for Re < 0.2

Fdrag = 6πaV0 (1 + 0.15Re0.687)

0.2 < Re < 500 -1000

3/45

Unbounded Stokes flow around a sphere: The viscous drag force
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Life at small scale and low Re numbers

Re
 108

 10-5

https://www.youtube.com/watch?time_continue=4&v=2kkfHj3LHeE

…but, inertia is totally irrelevant in the life of a
microorganism, i.e. for swimming at low Re-number !

Propulsion mechanisms at high Re (e.g. humans, fish,
etc.) are based on inertial effects, such as fins.

Can you swim like a bacteria ?
 e.g. at Re = 10-5

4/00

Normal conditions for human 
swimming are  Re ̴ 104 - 106 

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

Re
 108

 10-5

https://www.youtube.com/watch?time_continue=4&v=2kkfHj3LHeE

…but, inertia is totally irrelevant in the life of a
microorganism, i.e. for swimming at low Re-number !

Propulsion mechanisms at high Re (e.g. humans, fish,
etc.) are based on inertial effects, such as fins.

Human swimming with v  1 mm/h
in honey
(L = 2 m,  = 10 Pas,  = 1.5 kg/l)

May be a microorganism feels like this !

Can you swim like a bacteria ?
 e.g. at Re = 10-5

Life at small scale and low Re numbers
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Re
 108

 10-5

https://www.youtube.com/watch?time_continue=4&v=2kkfHj3LHeE

Rubber band powered toy that tries to 
paddle forward viscous corn syrup.

At low Re-numbers any reciprocal motion
(even if fast in one direction and slow in the
return direction) does not result in forward
motion due to the reversibility of Stokes flow.

https://www.youtube.com/watch?time_continue=4&v=2kkfHj3LHeE

Life at small scale and low Re numbers

“Microfluidics”  -- Thomas Lehnert -- EPFL (Lausanne)

 Microorganism have developed propulsion
mechanisms, such as flagella or cilia, working
as a flexible oar or as a corkscrew.

Deforming the shape of the paddle breaks the
symmetry of the stroke, creating more drag on
the power stroke than on the recovery stroke.

Life in moving fluids: the physical biology of flow 
by S. Vogel (1996)

Illustration of an Escherichia coli based on a SEM micrograph. These 
bacteria use flagella for propulsion. (A. Eckert and J. Oosthuizen)

PARAMECIUM (50 to 330 m, an abundant genus 
of unicellular ciliates) covered with hair-like cilia.
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dragged marker

E.M. Purcell, Life at low Re number, America Journal of Physics, Vol. 45, p. 3-11 (1997)

Dusenbery, David B. (2009). Living at Micro Scale, Harvard University Press, Cambridge.

http://www.youtube.com/watch?v=gZk2bMaqs1E

A bacteria typically moves at 20-40 m/s.
It takes him about 0.1 Å and 0.3 s to stop.

Protozoa

A protozoa (length 250 m, 100
m/s) drags water at a distances
up to 250 m (and more).

Added mass 200 g, i.e. 100 x cell
mass of 2 g
Try to swim with 10 tons attached
to our feet !

 Swimming in water on microscale becomes very difficult, due to
viscous drag (although the viscosity is very low,  = 1 mPas).

4/15


