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Part I1: Prof. M.A.M. Gijs (EPFL-LMIS2)
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1. Electrohydrodynamics

Debye-layer, electro-osmotic flow, (di-)electrophoresis
2. Magnetophoresis
3. Nanofluidics

The theoretical parts of this course are mainly based on: i R T

Theoretical Microfluidics
Henrik Bruus

Oxford University Press, 2008 (Reprint 2010)
(ISBN 978-0-19-923509-4)

Theoretical
Microfluidics

Equation/figure numbering in PART | of these lecture notes
refers to the indicated edition of the book.

Numbering in PART Il refers to an earlier edition !

All other references are indicated in the text.

Further reading:

Micro- and nanoscale fluid mechanics: Transport in
microfluidic devices
J. Kirby

Cambridge University Press 2010

also on youtube

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)



1. INTRODUCTION

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Microfluidic and nanofluidic systems =PFL

Cells on-chips [— 1mm

[ to0um

Yeast cell division

Microwave

C. elegans worms ~1 mm

Ultraviolet

10 nm

Nanofluidics

R

Nanopores
e E
1nm

Silicon atoms

Soft x-ray

T. Lehnert / Micro-718 (05.2021)



Nature is based on powerful microfluidic systems “PFL

Water transport system in vascular plants

Tallest known tree on earth: “Hyperion”
115.7 m ! Redwood (sequoia sempervirens)

The height is limited by increasing water
transport constrains.

Transport of water occurs through tube-like vessels with & ~ 10 - 100 um EPl:L
(Xylem, Eulov - wood). '

Evaporation through leaf pores (& < 10 pm) is a major driving force for pulling
up through the tree trunk.

Leaf pore

Vessel Tracheids 100 pm

T. Lehnert / Micro-718 (05.2021)



The human cardiovascular system

V ~ 5L, flow rate at rest ~ 5L/min

Networks of blood capillaries (& = 5-10 um)
span over the lung and other organs.

Total length ~100000 km (!) (80% capillaries).

Red blood cell
in a blood
capillary

Metarterioles

! Capillary beds spread over all tissues * l.:b:eagi;lary
where gas exchange occurs.

Macrofluidics - Microfluidics: What makes the difference ? =PFL

Flow patterns and solid body/liquid interactions

Niagara falls: Average flow rate 2000 m*/s

Jumping humpback whale
L=15m, speed 20-50 km/h. Large fins

Can it jump out ?

laminar flow

Swimming protozoa

L~ 100 um, speed < 100 um/s - Flagella, cilia

T. Lehnert / Micro-718 (05.2021)



Macrofluidics - Microfluidics: What makes the difference ?

Size matters: Effects of downscaling are important !

surface force
—
volume force

l'-_’

13 -0

= Inertial

= Viscous forces dominate (surface forces).

forces

= Interfacial/capillary forces determine the
liquid shape and driving forces.

= Exploiting boundary (e.g. electrokinetic)
effects is effective in microfluidic systems.

= Dimensionless

(and gravity) become
negligible (volume forces).

numbers evaluate the
relative importance of competing forces.

cPrL

—

Small raindrop
J~mm, Vx50 pul

2. Governing equations and

2.1
2.2
28
24
2.5

flow solutions

Flow kinematics and shear stress
Continuity equation in fluid dynamics
Navier-Stokes equations

Simple flow solutions

Reynolds number and Stokes flow

c=PrL

T. Lehnert / Micro-718 (05.2021)




cPrL

2.1 Flow kinematics and shear stress

How does a fluid flow?

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

c=PrL

2.1 Flow kinematics and shear stress

Continuum description: Flow around a wing

v(r,t) field Vector fields (direction and length)
p(r,t) field Scalar fields (“value”, no direction)

v(r,t) = v(v,,v,v,t) = u(rt)=u(u,v,wt)

Strain rate tensor g [s7!]

= A fluid deforms continuously at a P au qu
strain rate g, generated by velocity ax ’a'; az
gradients Vu. : B P 9v

= Extension and/or shear deformation E= ax ay az
w  dw dw

ax ay dz

9 components in the general case for u(u,v,w)

T. Lehnert / Micro-718 (05.2021)



e Example: Extensional strain rate of a fluidic element
Strain tensor for pure extensional strain ? & for a 2D velocity field u(u,v)
u  Ju
— e ax ay
By
ax y
u(u,v) |u=x,v=-y
s = 10
L7 LT PY NN\ ext = 0 -1
Ry PV VYNNYN
v ey s 8N W
& & F 7 7 VN NN
— EEE A ap Rl Diagonal elements of &
u WRNANANN L s s o s = Extensional strain rate
SN\ ANV P22
\\\\t1 1272,
\\\\\t¢?22/7/ X = 0 for incompressible fluids !
here denotations are taken from: J. Kirby, Micro- and nanoscale fluid mechanics : transport in microfluidic devices

c=PrL

e Example: Shear strain rate of a fluidic element

Strain tensor for pure shear strain ? & for a 2D velocity field u(u,v)
o du
— :— | ax 8y
B
ax ay

\\“‘-1’/,
\'\\\‘-ol”
ANy &P

8shear =

o -

- Symmetric off-diagonals
u
=> Shear strain rate
here denotations are taken from: J. Kirby, Micro- and le fluid hanics : port in microfluidic devices

T. Lehnert / Micro-718 (05.2021)



Sir Isaac Newton

Porirait of Isaac Newton in 1689 (age 46) by
Godfrey Kneller

Born 25 December 1642
[NS: 4 January 1843][1
Woolsthorpe, Lincolnshire,
England

Fields Physics - Natural philosophy
Mathematics - Astronomy
Alchemy - Christian theology

Economics

cPrL

= The strain rate tensor ¢ is related to the stress tensor ¢
[N/m? = Pa] (stress = force / surface area)

c=1n¢

G =T inliterature!

T\JENTOH,% L
Q_E N\SCos\TY

7 (T) or u(T) [Pa-s] is the dynamic viscosity

71 = constant (for T = const) = Newtonian fluids

In microfluidics the viscous
flow regime (internal
friction) is predominant.

= o is
importance!

of fundamental

—_—

—

— |
|

Friction between layers

c=PrL

4He (superfluid) at T<2.17 K=-271°C

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)




2.1 Flow kinematics and shear stress

= Partial differential equations
describing local properties of the
flow field.

= in particular for v(r,t) p(r,t) and force
densities.

Governing equations
= Continuity equation (mass conservation)
= Navier-Stokes equations for v(r,t) (momentum conservation)

= Convection-Diffusion equation

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

2.2 The continuity equation
in fluid dynamics

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)

10



EPFL

2.2 Continuity equation in fluid dynamics

e The continuity eqn expresses the conservation of mass M(Q,t)

0 — — M(St) = /{;dl‘ plr,t) (2.2)
L
. =, daB Y I(r,8) = plr, ) v(r,6) (23)
A = . . Mass flux density J(r,t) [kg/(m2s)]
A= — mass density p, flow velocity v
. ()
= M(€,t) in a region Q can only vary by mass flow through the
5Q surface 6Q2

IM(Q,t) = /dr Oip(r,t) = —j dan- J(r,t) (2.4)
aQ

]dr Oyp(r,t) :—] dan-(p{r,t}v{r,t})
0 a0

2.2 Continuity equation in fluid dynamics
Q . .
/ dr d,p(r,t) = —f dan- (p(ri)w’(r,t)) = _'i”B:" -
0 a0 i -~
Solve this for v(r,t): What is the problem ? -
3Q
—] dan- (p{r,t}v{r,t}) = —/ dr V-(p(r, t)v(r, f))
a0 Q
(2.5)
= using the Gauss theorem I
e
[ dan'V = /dl‘V-V i
Joxy JQ — .
T 1\\

A vector field with divergence
has a source (or a sink)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)
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2.2 Continuity equation in fluid dynamics

1
da <" _pv
f dr d,p(r,t) = —/ dan- (p{r,t)v{r\t)) - _i S
0 a0 - -
Solve this for v(r,t): What is the problem ? -
0Q

_Lﬂ dan- (P"\I',f)\«'{r,f)) = _/le'v'(p(l‘, Hvi(r, i‘))

(2:5)
* Nabla operator V = 93\33\ + euay +e, 33
« The divergence of a vector field is a scalar field V-v = d, v, + C)yt'y + 0.0,
e The gradient of a scalar field is a vector field Vp =e,6,p+e,0,p+e,0,p
“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
L=y = L
2.2 Continuity equation in fluid dynamics =PrFL
Q o .
da®=_"_pv
/ dr d,p(r,t) = —f dan- (p(ri)w’(r,t)) = _i i
0 a0 i -~
Solve this for v(r,t): What is the problem ? -
60
—] dan- (p{r,t}v{r,t}) = — / dr V-(p(r, t)v(r, f))
a0 Q
(2.5)
with (2.4) = (2.5) ] dr {r:fp(r,t) + V-(p(r, t)v(r, r))} =0 (2.6)
Q

Integral form of the Continuity equation

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)
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2.2 Continuity equation in fluid dynamics

It describes the mass balance in any point of the 3D flow field.

e for compressible fluids with p(r,t) and a flow field v(r,t)

Op + V-(pv) =0 or Op+V-J=0 (2.7)

e forincompressible fluids
(set p= const and uniform, i.e. 0,0 =0and 0,0 =0)

Divergence of v(r,t) V-v=0 or divv=0 (2.9)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

c=PrL

2.2 Continuity equation in fluid dynamics

Examples: A physical flow field must fulfil the continuity equation (Vv = 0). For
incompressible fluids the divergence of v(r,t) is zero everywhere in the field
(no source, no sink).

v ('Ta iy, 2) = {xi Y, Z)

0 4+ 0 0 =1+1+1=3
R T Fe

ot
A

divv(xyz) =

¥ =3
D F
» r
4

N

N

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)



B 1/45

2.2 Continuity equation in fluid dynamics

EPFL

sin k,y
v(x,y,z) = coskyx
0
V=ed +e¢,d +e,0,

vy

divv=0

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Claude-Louis Navier

i o ot
i ol |
Bust of Claude Louis Marie Henri Navier at the

Ecole Nationale des Ponts et Chaussees

Born 10 February 1785
Dijon, France

Died 21 August 1836 (aged 51)
Paris, France

Mationality  French

A specialist in bridge building (he
was the first to develop a theory of
suspension bridges).

2.3 Navier-Stokes equations

c=PrL

1821/1822

Navier modified the Euler equations (1757)for inviscid flow
p(i?fv + [V-V}V) =-Vp+ v teg

...by introducing friction in
the equations of fluid motion.

viscous term

e The Navier-Stokes equations (NSE) describe the
fluidic transport by advection

= Equations of motion for a flow field v(r,t).

¢ They express conservation of momentum.

= Newton’s 2" law applied to fluid mechanics.

T. Lehnert / Micro-718 (05.2021)

14



cPrL

Navier-Stokes eqns derived by using the Lagrange derivative

Consider a particle moving on an arbitrary path though a 2-D field ®(x,y,t),
e.g. a Tor p field. ® depends on (x,y) but may also change with time t.

Lagrangian description: The observer moves on the particle through the field.

Legend

Temperature in °C
101012
81010

6108

How do the field parameters @ (x,y,t) change along the path ?

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Navier-Stokes eqns derived by using the Lagrange derivative

The variation of ®(x(t),y(t)t) along the
pathline is expressed by the total time
derivative of ®@.

= Lagrange derivative D®/Dt

(also called substantial or material derivative)

= The pathline is given by [x(t),y(t))]

= Applying the chain rule for deriving ®(r(t),t)

D& OJddx odbdy 0P dz IP

2D=3D — = — 4+ —— 4 — — 4+ —
( ) Dt~ axdt T dydr ' 9z dt | at
= da/d d 0o b b 9P
or with v;= dx/dt TR I A L PR T:
The 3D Lagrange derivative can be written as D?5 = ()t L (VV) (2.34)

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)



Navier-Stokes Eqns derived by using the Lagrange derivative =PFL

How does the velocity of a particle change on
a specific path through a flow field v(r,t) ?

| | V(g,y,t)

.
sl s

250
e
¢
R )
Ll

© MeteoSwiss 7 -

In this case trajectory and velocity of the particle are not
arbitrary but determined by the flow field v(r,t) itself |

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

2/15
Navier-Stokes Eqns derived by using the Lagrange derivative =PrL
The Lagrange derivative D, = d, + (v-V) .
= v(xyt
for the velocity component v,(x,),2t) of the ) 7
particle is given by (likewise for v, and v,): i
- > == x(t)y(t) f
Dv,  dv, v, v, v, o ase o St a i
Drooox T oy T e e '-‘j,/

= Describes the acceleration of the particle :
when moving through the flow field v(r,t). ~ °™*™= "

Newton’s 2" law for a free particle md,v= Z F ;
= Relating this to forces ‘

“Newton’s 2" law” for a fluidic parcel p D,v = Z f;
i

= The equation of motion of the

fluidic parcel takes the form of the v+ (v-V)v] = £
Navier-Stokes equation p[ ) ( ) } z?: 4

(2:35)

= The force densities f; are related to pressure, viscosity and external body forces.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)
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L=
A heuristic derivation of the pressure and viscosity force densities ePFL

Pressure forces L (Az, Ay, Az)
F,(0) = p(0)AyAz F,(Ax) = p(Ax)AyAz
y
(0,0,0) ©
Total pressure force in x F, =p(0) AyAz — p(Az) AyAz

Total force density in x

- _ p(0) AyAz — p(Az) AyAz  p(Az) —p(0)

— PR .
Lo ArAyA-z Ax Wit Upp (2.74)

which is the = component of f = —Vp. The other two components are derived similarly.

f(xy,z) = -Vp(xyz2)

. L o . EPF
A heuristic derivation of the pressure and viscosity force densities =PFL

Viscous shear forces F,(Az) = 1 O,v,(Az) AxAy

Viscous force density g
vy (2 ) —

f(x,y,2) = nV2v(xy,2) —

(0,0.0) x
—)
F,(0) = 6,v,(0) AxAy

d,v,.(Az) ArAy — 0,v,.(0) ArAy g A0, (Az) — d,0,(0) . poZe,, (2.75)

fo=n AxAyAz Az Az—0

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)
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EPFL
Navier-Stokes equations for incompressible fluids

p = const, 17 =const

p(0 +(v-V)V) = ~Vp+ 1V + p g + paE

(2.30)

Non-linear 2" order vector partial differential eqn for v(r,t)

Navier-Stokes equations for compressible fluids

More details in Henrik Bruus “Theoretical Microfluidics”

p(r,t) and 77 = const, { = const

p(0v + (v 9)v) = =Vp+ V2 + (57 + ) VIVV) + pg + puE

1 is the dynamic viscosity due to shear stress. (2.29)

£ stands for internal friction due to compression.

Navier-Stokes equations for incompressible fluids (vector form)

Advective terms account for acceleration of fluidic
particles in unsteady or steady flow states.
= Inertial force densities

(p(ﬁ}v + [V-V)V)‘): —Vp+nVv+pg+p.E

The transient term 0,v is relevant if v(t) changes with time.

The non-linear term (v-V)v describes convective
acceleration (time-independent), e.g. in systems with no
translation invariance.

(v-V)v is particularly relevant in turbulent flow regimes.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)
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p(i?fv - [V-V)v) :(—V-p + :r;'\?gvzl—h’lpg + leE.“,

: . : . . c=PrL
Navier-Stokes equations for incompressible fluids (vector form)

Body force densities

AY

\ 7 \ 7

Vp and V-c are surface force densities
for pressure and viscous shear stress.

For incompressible fluids V-o = nVv

n dynamic viscosity [Pa-s]

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

. pVE
fiw?

= The inertial part of the NSE is given by

p(afwr(v.V)v) with O,y =0 o
pV

V, and L, are characteristic scales of the system.

L=y = L
Exploring the non-linear term (v-V)v in the Navier-Stokes eqns =PFL

Example: Steady (time independent) flow through a constriction (nozzle)

= Advective acceleration of the flow

Rough estimate of the inertial force density f,
assuming that v, increases by V, over L,

T. M. Squires and S. R. Quake: Microfluidics: Fluid
physics at the nanoliter scale

[ kg/m3 - m?/s?2m ]

[kg m/s?-m3]
[N-m?3]

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)
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Exploring the non-linear term (v-V)v in the Navier-Stokes eqns

Example: Inviscid flow (neglecting viscosity)
in a pressure field.

(v-V)v|=-Vp

e.g. only pressure gradient in x-direction

dv, vy dp
(—+ Vy = Uz—)I - =
at 0x 0z 0x
A pressure generates
velocity/gradient components in xy,z directions. Turbulences on marcoscale due to fluidic inertia

This results in flow instabilities and turbulences !

In microfluidics inertial forces are normally negligible with respect to viscous forces.

Some examples where inertial fluidic properties are relevant will be shown later.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

B 3/00

This problem is:

2.4 Solutions for simple flow problems

USS 1 million Millennium Problem
Navier-Stokes equations are a
system of non-linear
partial differential eqns.

c=PrL

http://www.claymath.org/millennium-problems

Approaches for solving the Navier-Stokes equations

- Numerical solutions

- Analytical techniques (e.g. eigenfunction
expansion)

- Simplifications  in  specific cases (simple
geometries, Stokes flow at low flow rates)

= Initial and boundary conditions have to be defined.

v(r) =0, for readQ (noslip)

No-slip boundary condition for a channel wall

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)
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Taylor-Couette flow of a viscous fluid between rotating cylinders =PrL

Good model system to study flow
instabilities and transitions.

Low rotation speed

Couette flow purely azimuthal and laminar
(bearing flow).

Application: Rheometers for measuring 7,

High rotation speed

Flow becomes unstable: Vortices and
turbulent patterns emerge.

https://doi.org/10.1051/epjconf/201921302014
https://en.wikipedia.org/wiki/Taylor-Couette_flow

(i)

(ii)

Couette flow between two moving parallel plates

“J Po (Fig. 3.3)

Navier-Stokes egn

p = p, = const

p(afv + (V-VJV) = Vp+nVV+pg+p,E

Translation invariance along x

= The non-linear term vanishes

(iii) Steady state conditions

vir) =uv,(z)e,

(v-V)v= va\[z]c"?x[t-'x(,z)] =0

dv=0

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)
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Couette flow between two moving parallel plates

w - >
Po L v(2) g Po
0 - v, =0 T
Navier-Stokes eqn n A2y =

(i) Translation invariance along x

= The non-linear term vanishes
(i) p=pg=uniform
(iii) Steady state conditions

(iv) no external forces

vir)=wv,(z)e,

(V- V)v=10,(2)0,[v,(2)] =0

i:)fV =0

EPFL

(Fig. 3.3)

Couette flow between two moving parallel plates

h >
4?”/ o
— v °
|
v = v, =0 &
Navier-Stokes eqn 7 ‘5‘? v=~0
Solution by integration o z
= Linear velocity profile t".r:(cz) =1 E
Force required to move the plate F =0 A=, 1-'|;|«4
(with surface A) e = Tez ATy

oy, = 1 0v,/0z

“Microfluidics” --

Thomas Lehnert -- EPFL (Lausanne)

(Fi )

w

.3

aa

(1)

T. Lehnert / Micro-718 (05.2021)
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30

cPrL

Couette flow between two moving parallel plates

h z - L ——_—
.
— g i
e (2) (Fig. 3.3)
e
v = v, =0 e
2 Physical interpretation of Couette flow:
nd;v=20 Y P f f
- (i) No convective acceleration, uniform
pressure.
= (ii) The viscous force density is zero (the
1-‘1,(2} =11y E second derivative of v).
(iii) The profile v(r) is independent of 7.
) (iv) The total force F, is fct of the viscosity.
I t"‘D'/'1
F.r = Oz =0

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

=
2.5 Reynolds number and Stokes flow =PrFL

Philosophical Transactions of the Royal Scociety 1883
Osborne Reynolds

ﬁ:* 84 Mr. 0. Reynolds. [Mar. 15,

1IL. « An Experimental Investigation of the Circumstances which
Determine whether the Motion of Water shall be Direct or
Sinuous, and of the Law of Resistance in Parallel Chau-
nels.” By OsporyE REvNoLps, FLR.S. Received March 7,

Born 23 August 1842

Flow regimes
Belfast, Ireland
Died 21 February 1912 (aged 69) ’—B
Walchet, Somerset, England l/ Laminar flow
Nationality United Kingdom
Fields Physics
Turbulent flow

T&WMHS nu#Ld“
? ; o L QIV
“f R

>> 1 = turbulent flow regime

o

Turbulent flow (observed with an electric spark)

for Re > Re_,;

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)
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Different flow regimes

(Reproduction of Reynold’s original experiment)

cPrL

Transition from laminar to turbulent (water) flow in a tube with increasing flow speed

https://www.youtube.com/watch?v=XOLI2KeDiOg

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Dimensionless form of the Navier-Stokes equations

Navier-Stokes eqn JO(BTV + (V"VJV) = -Vp+nVv

Dimensionless (normalized)
forms can be derived for all
variables, in particular for ...

Pressure p is also a “stress”

In microfluidics, the pressure p is
normalized by a characteristic
shear stress nV,/L,.

“Microfluidics” --

The general fluidic properties of a system can be evaluated by using
characteristic scales determined by the boundary conditions: L,, V,

r=L,r
'0\ V
v=V,v
Vo - -
— :P
P L, p oP

Thomas Lehnert -- EPFL (Lausanne)

= (1/Ly) V

T. Lehnert / Micro-718 (05.2021)
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Dimensionless form of the Navier-Stokes equations =PrL

Navier-Stokes eqn

V)v) = -Vp+ V2
for ov=0 p([v )v) pHnVIY

= Making the Navier-Stokes eqns dimensionless

V)P e Pyo. 0V o
p[ 0 {V-V)v}:—-L—UVﬁ—f—mvsz
i}

r 2 2.
L, L, (237)
Dimensionless form R [ = ¥ ~} = =2
el(v-V)v|=-Vp+V v
of the NSE (V) b (2:38)
VoL 2 1 i
Reynolds number Re = PYo%o PVe?/Ly inertial force )
n nVy/Ly? viscous force
or the kinematic viscosity v= 1/p, v=10°m?/s for water
“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
Some values for Reynolds numbers =PrL

Typical values for microfluidic devices —
Water-based fluids 7= 1.0 mPa s

Range of flow speeds 1 um/s - 1 cm/s

Typical channel width 1 - 100 um

500
= Re range between O(10°) to O(10°) ==
= Re are very small in microfluidic systems

Microorganisms  ~ 10%- 1073

Blood flow in aorta ~ 1 x 103

Human swimming ~ 10% - 106

Onset of turbulent flow

Flow in a pipe 2.3x10% to 5.0x10%
Boundary layers  up to 106

T. Lehnert / Micro-718 (05.2021)
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Inertial microfluidics

= In microfluidics fluid inertia is normally negligible (Stokes flow, Re « 1).
= Inertial microfluidics works in between Stokes and turbulent regimes (inertia
and fluid viscosity are finite, ~1 < Re < ~100).

Random particle
distribution #

Qutlet

Particle sorting by inertial lift forces Vortices in expanding channels
for cell trapping

J. Zhang et al., Fundamentals and applications of inertial
microfluidics: a review, Lab Chip, 2016, 16, 10

3D hydrodynamic focusing using Dean flow

Dean flow: Circulating secondary flow in slightly curved channels (R >> w).
Inertial effects at high Re numbers (~1 < Re < ~100) / high flow speeds !

Inhomogeneous flow profile causes centrifugal
forces (greatest in the center).

Dean number

K = (d/R)%5Re

tube diameter d or channel width, R is the radius of curvature of the

path of the channel.

Dean flow in curved channels

(see also Chapter 4.2.5: “A multivortex mixer based on inertial flow properties”)

T. Lehnert / Micro-718 (05.2021)
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c=PrL
3D hydrodynamic focusing using Dean flow

Example of a single-layer planar device (PDMS)

= Dean vortices generate “microfluidic drifting”

= Stretching of the sample flow across the
channel width (vertical focusing, red).

= Two lateral sheath flows are introduced for
horizontal focusing.

Re =74 (), De ~43

High flow speed in the range of ¥ m/s !

Cross-sectional profiles of the fluorescein dye concentration in the
X. Mao et al., Lab Chip, 2007, 7, 1260-1262 focusing device. Inset: simulation of the secondary flow velocity field

. shows Dean vortices in the 90° curve.
X. Mao et al., Lab Chip, 2009, 9, 1583-1589

Main channel w=100 pum, h=75 pm, L=1cm, R ;. = 250 um

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

c=PrL

3D hydrodynamic focusing using Dean flow focusing for on-chip cytometry

Focused beam & <15 pm

am Lo
The 3D architecture of the sample flow w8
during the focusing process characterized by
confocal microscopy (fluorescein solution). Inlet A: Cells or particles;

Inlet B: vertical focusing sheath flow;

X. Mao et al., Lab Chip, 2007, 7, 1260-1262 Inlets C and D: horizontal focusing sheath flows.
Inset 2 represent the Dean vortices.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)
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Stokes flow and Stokes equations =PrL

Stokes, G. G.
Sir George Stokes, Bt. Effect of the Internal Friction of Fluids on the Motion of Pendulums
Transactions of the Cambridge Philosophical Society, Vol. 9, pp. 8-93, 1851

He assumed that the flow is so slow that
acceleration of the fluid as it passes around the
sphere can be ignored, (v-V)v = 0.

R
He derived the viscous drag force
Fy on a sphere by solving a
Born 13 August 1818 simplified version of the Navier- |11/ HH
i Stokes eqns analytically.
Died 1 February 1903 (aged 83)
Cambridge, England F
Fields Mathematics and physics g
Institutions University of Cambridge
Sedimentation of (micro-)particles
“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)
. =
Stokes flow and Stokes equations c=PrL
i — 2
Stokes equation 0 = —Vp +nVev (2.41)

Stokes flow or “creeping flow” (very slow !)

Stokes equations are most relevant for flow in microchannels, transport of microparticles or
cells, the swimming of microorganisms, etc.

= low viscosity

= negligible inertial forces

High viscosity flows or very slow motions.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)
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Stokes flow and Stokes equations =PrL

Stokes equation 0 = —Vp +nV?v (2.41)

Stokes flow or “creeping flow” (very slow !)

Reynolds introduced “his” number only in 1883, i.e. more than 30 after Stokes’
intuitive approach.

For Re << 1 the non-linear term p(v-V)v in the Navier-
Stokes equation can be neglected.

Re|(v-V)¥] = -V5+ V¥

Re < 0.1is a rule of thumb that the Stokes eqns are a good approximation.

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

Properties of Stokes flow

- Uniqueness (no flow instabilities)
= Laminar flow patterns
- Linear in p and v : Superposability of

flow solutions, e.g. for a changing
driving force (boundary condition).

- Reversibility: (i) Flow symmetry around
obstacles. (“) If a boundary motion is Microfluidic artwork showing laminar flow patterns.
reversed then each point of the flow
retraces its history.

Ve, e

Tesla valve. In the Stokes flow regime no
“valving” effect is observed for inverted flow
directions as forward and reverse flow paths

Very stable flow conditions:
Hydrodynamic focusing down to wy, #10 um

T. Lehnert / Micro-718 (05.2021)
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The transient form of the Stokes equation =PrL

o # 0 = Transient form of the Stokes equation Patv = —-Up+ anv

Example: Poiseuille flow in a channel for time dependent
boundary conditions: Ap = 0 for t > 0 (relaxing flow)

Stokes eqn takes the form of a momentum v =v Vv
diffusion equation with the diffusion constant
v = n/p (kinematic viscosity [m?/s])

<) 2 t=il) 2 t>0 2 t— o0

™~

A ) : : L
PHAp ——»ip* pt et A | p* P p
, . ] ] 0
j - -
=l V=N, V<V, I =
“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

. . =

The transient form of the Stokes equation =PrL

Estimation of the time scale 7, to establish/or to stop a steady laminar flow upon
application/release of an external pressure difference Ap.

P’ Ly
atv — v Vy Balan.ce of unsteady in.e(tial
and viscous force densities
2
oV _ o pLo ~ 10 ms for a
e N
To 0 n 100 um channel

“Microfluidics” -- Thomas Lehnert -- EPFL (Lausanne)

T. Lehnert / Micro-718 (05.2021)
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Unbounded Stokes flow around a sphere: The viscous drag force

Important for transport of microparticles or cells, diffusivity of macromolecules,
the swimming of microorganisms, etc.

Example: Microsystems based on functionalized magnetic microbeads

Virus sample chamber
Rotary pump 3

Waste chamber.

Bead sample chamber
Microcoils

Purified sample
collection chamber (b)

Y. enterocolitica attached to magnetic
microbeads ( & 4.5 um )

K. Lien et al., Lab Chip, 2007, 7, 868-875 | 869
3/15 DOI: 10.1039/b700516d

c=PrL

Unbounded Stokes flow around a sphere: The viscous drag force

Purification and enrichment of Dengue viruses

K. Lien et al., Lab Chip, 2007, 7, 868-875 | 869
DOI: 10.1039/b700516d

T. Lehnert / Micro-718 (05.2021)
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Unbounded Stokes flow around a sphere: The viscous drag force

Creeping flow (Re <<1): Acceleration can be ignored / inertial forces (v-V)v = 0.
The fluid is further slowed down due to viscous forces when passing the bead surface.

VQV::-%VU)

Boundary conditions
v(a) =0 and v(x) = v,

T 5 E: »;*: ¥ S ]
. 3a ad N\Vz/ 7//;
U= +I’U cosf |1 — 2— + F 7 \\\\/ ;///’

r — S
3a a:j \\\ e e g
vy =-<=Veginl |1 e \
g 0 Ay 43 The flow pattern is symmetrical front to back.

= Velocity field v(r,8) in terms of a power
series in a/r (spherical coordinates)

for more details: J. Kirby, Micro- and nanoscale fluid mechanics

: ; =PrL
Unbounded Stokes flow around a sphere: The viscous drag force
anV, 3V
p=p° — j} 9 cos s AT %0 sin 6 (3.126)
2a 2a

Pressure field on the sphere

flow
—_—
pressure
shear stress
Pressure field on the sphere Shear stress on the surface of
(radius a, p* = ambient pressure) a sphere (radius a)

T. Lehnert / Micro-718 (05.2021)
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Unbounded Stokes flow around a sphere: The viscous drag force
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=
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flow
flow _—
pressure
shear stress
Pressure field on the sphere Shear stress on the surface of
(radius a, p* = ambient pressure) a sphere (radius a)

3/45

c=PrL

Unbounded Stokes flow around a sphere: The viscous drag force

3nV; InVy .
p=p° — ;} 9 cos Oy = A sin 6 (3.126)
Za za
Pressure field on the sphere Shear stress on a sphere

= The drag force F4 can be derived from the stress tensor @ as integral over the
surface force densities (including the normal p components).

‘Stokes Law’ for the viscous drag force on a sphere F drag = 6y a.VD (3.127)

accurate for Re < 0.2

Corrections:
= Drag coefficient starts deviating for ~Re 0.2 Fy,, = 6170V, (1 + 0.15-Re%%%7)
0.2 < Re <500 -1000

= Drag on a sphere will be up to a factor 3 higher in the vicinity of a solid wall.

T. Lehnert / Micro-718 (05.2021)
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Life at small scale and low Re numbers =PFL

https://www.youtube.com/watch?time_continue=4&v=2kkfHj3LHeE

ST Re

& = > . . 8
‘ A large whale swimming at 10 ms-!  ~10

A bacterium, swimming at 0.0l mms=!  ~ 10

Normal conditions for human
swimming are Re ~ 10 - 106

Can you swim like a bacteria ?
= e.g. at Re = 10>

Propulsion mechanisms at high Re (e.g. humans, fish,
etc.) are based on inertial effects, such as fins.

..but, inertia is totally irrelevant in the life of a
microorganism, i.e. for swimming at low Re-number !

Life at small scale and low Re numbers =PrL
https://www.youtube.com/watch?time_continue=4&v=2kkfHj3LHeE

Re
A large whale swimming at 10 ms—!  ~ 108
A bacterium, swimming at 0.0l mms-!' ~ 10°

Can you swim like a bacteria ?
= e.g. at Re = 10

Human swimming with v~ 0.1 mm/h
in honey
(L=2m, n=10Pa-s, p=1.5kg/l)

May be a microorganism feels like this !
Propulsion mechanisms at high Re (e.g. humans, fish,
etc.) are based on inertial effects, such as fins.

..but, inertia is totally irrelevant in the life of a
microorganism, i.e. for swimming at low Re-number !

T. Lehnert / Micro-718 (05.2021)
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Life at small scale and low Re numbers =PFL
https://www.youtube.com/watch?time_continue=4&v=2kkfHj3LHeE

o

Re
A large whale swimming at 10 ms-!  ~ 108
A bacterium, swimming at 0.0l mms-1  ~ 107

At low Re-numbers any reciprocal motion
(even if fast in one direction and slow in the
return direction) does not result in forward
motion due to the reversibility of Stokes flow.

Rubber band powered toy that tries to
paddle forward viscous corn syrup.

https://www.youtube.com/watch?time_continue=48&v=2kkfHj3LHeE

c=PrL

= Microorganism have developed propulsion
mechanisms, such as flagella or cilia, working
as a flexible oar or as a corkscrew.

Deforming the shape of the paddle breaks the
symmetry of the stroke, creating more drag on
the power stroke than on the recovery stroke.

Life in moving fluids: the physical biology of flow
by S. Vogel (1996)

PARAMECIUM (50 to 330 um, an abundant genus
of unicellular ciliates) covered with hair-like cilia.

Illustration of an Escherichia coli based on a SEM micrograph. These
bacteria use flagella for propulsion. (A. Eckert and J. Oosthuizen)

T. Lehnert / Micro-718 (05.2021)
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Re = 0.025

http://www.youtube.com/watch?v=gZk2bMags1E

A bacteria typically moves at 20-40 um/s.
It takes him about 0.1 A and 0.3 ps to stop.

E.M. Purcell, Life at low Re number, America Journal of Physics, Vol. 45, p. 3-11 (1997)

Dusenbery, David B. (2009). Living at Micro Scale, Harvard University Press, Cambridge.

cPrL

= Swimming in water on microscale becomes very difficult, due to
viscous drag (although the viscosity is very low, 77 =1 mPa-s).

A protozoa (length 250 um, 100
um/s) drags water at a distances
up to 250 um (and more).

Added mass ~200 pg, i.e. 100 x cell
mass of ~2 g

Try to swim with 10 tons attached
to our feet !

—
v=30 Mfbec
)z: [ centipoise v=/3% o /sec
s
q =2x/0

o
{Cmsﬂn? distance = 0./ A g

coasting time = 0.3 mMiCrosec,

T. Lehnert / Micro-718 (05.2021)
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